February 2016 Problem of the Month Trigonometry

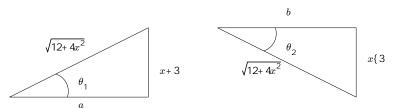
Show that

$$\sin^{-1}$$
 $p\frac{+3}{12+4^{-2}}$ \sin^{-1} $p\frac{3}{12+4^{-2}}$

is constant for 1

1, and the value of the constant.

Solution



Denote the expression as $\theta_1 \quad \theta_2$. Notice from the gures that the unknown side of the triangle with angle θ_1 is $12 + 4^2$ ($p + 3)^2 = 73(1)$, and the unknown side of the triangle with angle θ_2 is $12 + 4^2$ ($3)^2 = 73(1 + 3)^2 = 73(1 + 3)^2$). Taking the sine of the expression,

$$\begin{aligned} \sin(\theta_1 \quad \theta_2) &= \sin \theta_1 \cos \theta_2 \quad \cos \theta_1 \sin \theta_2 \\ &= p \frac{+3}{12+4^{-2}} \quad p \frac{\overline{3}(1+)}{12+4^{-2}} \quad p \frac{\overline{3}(1)}{12+4^{-2}} \quad p \frac{3}{12+4^{-2}} \\ &= \frac{p \frac{\overline{3}}{\overline{3}}}{2}.
\end{aligned}$$

Hence the expression equals either π 3 or 2π 3, but the expression is continuous on [1,1], so it cannot take on both values. When = 0,

$$\sin^{-1}$$
 $\mathcal{P}\frac{+3}{12+4^{-2}}$ \sin^{-1} $\mathcal{P}\frac{3}{12+4^{-2}} = \frac{\pi}{3}$ $\frac{\pi}{3} = \frac{2\pi}{3}$.

Thus, the expression must equal 2π 3 on the entire interval.