
February 2016 Problem of the Month

Trigonometry

Show that

sin−1

(
x + 3p
12 + 4x2

)
� sin−1

(
x � 3p
12 + 4x2

)
is constant for �1 � x � 1, and �nd the value of the constant.

Solution

b

2
x12+4

{3x
2
µ

a

2x12+4

+3x

1
µ

Denote the expression as θ1 � θ2. Notice from the �gures that the unknown
side a of the triangle with angle θ1 is
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Hence the expression equals either π/3 or 2π/3, but the expression is contin-
uous on [�1, 1], so it cannot take on both values. When x = 0,
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Thus, the expression must equal 2π/3 on the entire interval.


