SOLUTION OF THE PROBLEM OF THE MONTH, SEPTEMBER 2019

Consider the integer sequence fx_ng_{n-0} given by $x_0 = 0$; $x_1 = 1$ and

 $x_n = 4x_{n-1}$ x_{n-2} ; for all n = 2:

The rst few terms of this sequence are

0;1;4;15;56;209;780;2911;10864;40545;151316;564719;2107560;7865521;29354524;:::

Find the smallest n = 2 such that x_n is a prime number, or prove that such an n does not exist.

Solution. It turns out that for every n = 2, the term x_n is composite. We will need the following statement which can be easily proved by induction.

For every n 2 we have

(1) $X_{n+1}^2 - 4X_n X_{n+1} + X_n^2 = 1:$

Assume that $p_{+1} = p$, where p is a prime 3. Then, the above equality can be written as $p^2 \quad 4px_n + x = 1$ or $x_n^2 \quad 4px_n + p^2 \quad 1 = 0$. Regard this as a quadratic equation in x_n . Since x_n is an integer, the discriminant thus to be a perfect square, that is $f(4 \ 1 \ 2 \ 527 \ - \ 1 \ 0 \ 385 \ Td$